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A steady flow of a vapor in a half space condensing at incidence onto a plane condensed
phase is considered in the case where another gas that does not condense (the noncon-
densable gas) is present near the condensed phase. A systematic asymptotic analysis of
the Boltzmann equation for hard-sphere molecules is performed in the case where con-
densation is weak, and the relation among the parameters of the vapor flow at infinity,
those associated with the plane condensed phase, and the amount of the noncondensable
gas is derived in an analytical form. The result supplements the numerical result for the
relation for arbitrarily strong condensation obtained on the basis of a model Boltzmann
equation and under the restriction that the vapor molecules are mechanically identical
with the noncondensable-gas molecules [Taguchi ef al., Phys. Fluids 15: 689 (2003)].

KEY WORDS: Boltzmann equation, kinetic theory of gases, binary gas mixture,
Knudsen layer, evaporation and condensation
PACS numbers: 47.45.-n, 51.10.+y, 05.20.Dd, 05.60.-k

1. INTRODUCTION

Let us consider a steady flow of a vapor around its condensed phase of arbitrary
shape, on the surface of which evaporation or condensation may take place. The
continuum limit, where the Knudsen number goes to zero, of such a system is in-
vestigated in ref. 1, where the appropriate fluid-dynamic system (the compressible
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Euler equations and their boundary conditions) are derived by means of a system-
atic asymptotic analysis of the Boltzmann equation and its boundary condition (see
also ref. 2). Recently, the analysis of ref. 1 was extended to the case where a small
amount of another gas that neither evaporates nor condenses on the condensed
phase (noncondensable gas) is contained in the system®, and it was shown that
a trace of the noncondensable gas causes a significant effect on the vapor flow,
through the boundary condition for the Euler equations on the condensing surface.

The boundary condition for the Euler equations on the condensing surface
is derived by solving the half-space problem of condensation of the nonlinear
Boltzmann equation in the presence of the noncondensable gas.) More specifi-
cally, the boundary condition is equivalent to the relationship among the parameters
of the vapor at infinity, those associated with the plane condensed phase, and the
amount of the noncondensable gas confined near the condensed phase. This half-
space problem has been investigated in refs. 4—7, and the relationship has been
established numerically.

In these references, the relationship is obtained under the condition that
the mechanical property of the vapor molecules is the same as that of the
noncondensable-gas molecules because it leads to various advantages, such as the
simplification of analysis and the drastic reduction of the amount of computation.®
However, this at the same time reduces the applicability of the numerical boundary
condition to the practical problems. In addition, the numerical boundary condi-
tion is obtained on the basis of the model Boltzmann equation for a gas mixture
proposed by Garzo, Santos, and Brey (GSB model).®

Now, let us give a look at the half-space problem of condensation of a vapor in
the absence of the noncondensable gas. This problem has comprehensively been
investigated both by numerical®~'¥ and analytical’>~!?) methods. In refs. 15
and 16, the relationship among the parameters of the vapor at infinity and those
associated with the condensed phase is derived analytically under the condition of
weak condensation.

In view of this fact, it is worth trying a similar analysis of the half-
space problem of condensation in the presence of the noncondensable gas when
the condensation is weak. In the present paper, we perform such an analysis of the
Boltzmann equation to derive the relationship among the parameters in a more
explicit form in a more general case under the restriction that the condensation is
weak.

2. FORMULATION OF THE PROBLEM
2.1. Problem

Consider a vapor in a half space X; > 0 bounded by a stationary plane con-
densed phase of the vapor located at X; = 0, where X; is a rectangular coordinate
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Fig. 1. Vapor flow condensing on a plane condensed phase in the presence of a noncondensable gas.

system. There is a uniform vapor flow at infinity toward the condensed phase with
velocity vico = (V1cos V200, 0) (V1o < 0, 1200 > 0), temperature 7t and pressure
Poo (or molecular number density #o, = poo/ k Too, Where k is the Boltzmann con-
stant). The condensed phase is kept at a constant and uniform temperature 7,,.
Steady condensation of the vapor is taking place on the condensed phase, and
another gas neither condensing nor evaporating on the condensed phase, which
we call the noncondensable gas, is confined near the condensed phase by the con-
densing vapor flow. (See Fig. 1) We investigate the steady behavior of the vapor
and the noncondensable gas on the basis of kinetic theory, under the following
assumptions: (i) the molecules of the vapor and those of the noncondensable gas
are elastic hard spheres; (ii) the vapor molecules leaving the condensed phase
are distributed according to the Maxwellian distribution describing the saturated
equilibrium state at rest at temperature 7,,; (iii) the noncondensable-gas molecules
leaving the condensed phase are distributed according to the Maxwellian distri-
bution with temperature 7,, and flow velocity 0, and there is no net particle flow
across the condensed phase (diffuse reflection); (iv) the condensation is slow. The
assumption (ii), which is a conventional condition for evaporation and conden-
sation, has been justified to some extent by recent studies based on molecular
dynamics®? and an Enskog—Vlasov kinetic system.?!

For later convenience, let us denote by p,, the saturated pressure of the
vapor at temperature 7,, and by n,, the corresponding molecular number density
(ny = pw/kTy). In the following, we assign the label 4 to the vapor (it will also
be called A-component) and B to the noncondensable gas (it will also be called
B-component).

2.2. Basic Equation

We first introduce the basic notations: &; is the molecular velocity, F“ the
velocity distribution function of the ®-component (¢ = A4 corresponds to the vapor
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and ¢ = B to the noncondensable gas); n* is the molecular number density, p*
the mass density, 7% the temperature, p* the pressure, and vy = (v{, v, 0) the
flow velocity of the a-component; # is the molecular number density, p the mass
density, T the temperature, p the pressure, and v; = (v;, vy, 0) the flow velocity
of the total mixture; m® and d* are the mass and diameter of a molecule of the
a-component.

Then, the Boltzmann equation for a binary mixture in the present steady and
spatially one-dimensional problem reads?? 24

aF”

3 ax,

= Z JPUFE, F%), (¢ = 4, B), (1)
B=A4,B

where JP¥(FP, F®) is the collision term that expresses the effect of molecular
collisions between molecules of the o and S-components on the change of F*. Its
explicit form will be given in the dimensionless form in the next subsection.

The boundary condition on the condensed phase is given as follows:

n g2
FA— v 2y 2

kT, /mA)y eXp( 2kTw/mA) ’ 22)

o8 g2
FBo w2 2b
kT, /mB)/2 eXp( 2T, mE |’ (20)

for & > 0 at X; = 0, where
2emB\ 2
op = _< T ) £§FE (X, =0,&)d%, (3)
w £ <0

with d3¢ = d&,d&,d&;. The condition at infinity is

A Moo " <_($1 — Vi)’ + (62 — v200)” + 532) ()

= Gkl mAypr & KT mA

F% >0, (4b)

as X; — oo.

2.3. Dimensionless Variables

We first choose the following mean free path /,, and speed c,, as the reference
length and speed:
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1 2kT,\'?
ly=———— cy=(—2) . 5)
V27 (d*)n, mA

Here, I, and c¢,, are, respectively, the mean free path and the most probable speed
of the vapor molecules in the equilibrium state at rest with molecular number
density n,, and temperature 7,,. Then, we introduce the following dimensionless
parameters

ﬁioo = viOO/va ﬁoo = noo/nuu ]A-'oo = oo/Tun ﬁoo = poo/pwa (63)
e =m®/m", d* =d*/d*, (¢ = A4, B), (6b)

and dimensionless variables

X = QINTXi/ L), &= &/ew, F = (c}/na)F*,  (Ta)
AY = n%/ny, 2% = p®/m?ny, 7% =T%T,, (7b)
" = p*/Pu, 0 = /cw, (05 =0), (7c)
n=n/ny, p=p/miny, T=T/T,, (7d)
P = p/puw, b = vi/cy, (03 = 0). (7e)

The Boltzmann equation (1) is then written in the following dimensionless
form:

aFe

_ >Ba TBay B fra _
G = > KPJPEP FY), (a= A, B), ®)
p=4,B
where
. 1 o » %
JP(f. ) = Wors /[f((f; 8@y = f(@a)g@)le; VildQend® .. (9a)
o /:Lﬁa ” o /"}“ﬂa %

=0+ e (eiVpei, i = - —gleiVie. (Ob)
(P = 2mmP o + mP), V= Cu — G (9¢)
I%ﬁ“ = [(620[ + 62,8)/2]2’ d?’{* = d§*1d§*2d§*3 (9d)

Here, e; is a unit vector, ¢,; the variable of integration corresponding to ¢;, and
d2(e;) the solid angle element in the direction of e;. The domain of integration
in Eq. (9a) is the whole space of ¢,; and all directions of e;. The collision integral
Jha (f, g) has the properties summarized in Appendix A.
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The dimensionless form of the boundary conditions (2a) and (2b) on the
condensed phase is given as

FA =m0 exp(—£7), (10a)

FP = (i )6, exp(—i "), (10b)

for £; > 0 at x; = 0, where
68 = 22 / G FB G = 0, 5)ds. (11)
£1<0

with d3¢ = d¢,d¢,d¢s, and that of the conditions (4a) and (4b) at infinity is

VRS a2 e
FA 5 foo(mTa) > exp (_(gl Do) ¥ (}2 ) T ) ’ (12a)

T
FE 0, (12b)
as x; — OQ.
v

The macroscopic quantities 7%, 0%, 0, p*, T, a1, p, U;, p, and T are defined
as follows:

A= /ﬁ%ﬁ;, 2% = meA°, (13a)
Aa 1 o 73 o
it = o [afede @ =0 (13b)
Aa_Aafva_zAa ~o Zﬁvad?a 13
pr =0T = o [ (& = 5) ¢, (13¢)
A :/ FPfdc, ,a:f Z mPEPdPe, (13d)
p=A4.B p=4.8
1 ~
s T/Kf o wfFPde, (5 =0), (13e)
P B=4,B
) .
p=hT=73 /(;, —0,)" Y wlFlde. (131)
B=4,B

The domain of integration of the integrals with respect to ¢; in Egs. (13a)—(13f) is
the whole space of ¢;. The same rule applies to all the integrals with respect to ¢;
in this paper unless the contrary is stated. The macroscopic quantities for the total
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mixture are expressed in terms of those for individual components as

i= il p= Y A pui= Y L (14a)
B=A,B B=A4.B p=A,B

. NN TN ERY

p= [pﬂ + g,oﬁ(vf — 7)) ] (14b)
B=A4,B

It should be noted that in the literature, the pressure p® and temperature 7% of
each component are often defined in a different way, i.e., by Eq. (13c) with 07
replaced by 9; of Eq. (13e). Then, the pressure p of the total mixture becomes the
simple sum of 54 and p? rather than Eq. (14b).

The boundary-value problem, Egs. (8), (10a), (10b), (12a), and (12b), contains
the dimensionless parameters T, Poo (O figs), Dioo, D200, M5, and d®. In addition
to these, we need a parameter that specifies the amount of the noncondensable gas
in the system. In our previous works,*~7) the following I" is used:

r 2 1 ‘/w Bax (15)
=— n"dX,

ﬁ nooloo 0
where I/ is the mean free path of the vapor molecules in the equilibrium state
at rest with temperature 7, and molecular number density n.,, which is, for
hard-sphere molecules, given by

1

= 16
~= (16)
For hard-sphere molecules, I' becomes
o0
r:/ ABdxi, (17)
0

because 1/, = nools holds.

The integration of Eq. (8) over the whole ¢; space leads to 7%0¢ = const
because the right-hand side vanishes in the integration (Appendix A). For the
noncondensable gas, 7A%9f = 0 holds on the condensed phase because of the
diffuse reflection (10b) and (11) or at infinity because of Eq. (12b). Therefore,

ABf =0or

=0, (18)
holds identically for x; > 0.

2.4. Parameter Relation

The boundary-value problem defined by Egs. (8), (10a), (10b), (12a), and
(12b) is characterized by the dimensionless parameters Poo, Toos V1oos V200, and
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I' in addition to the parameters m? and d® of the molecular property. These

parameters are not independent but should satisfy certain relations in order that
the problem has a (time-independent) solution. These relations have been clarified
in ref. 4 and subsequently in refs. 5-7 under the assumption that the molecules
of the vapor and those of the noncondensable gas are mechanically identical
(m? = d® =1 in the case of hard-sphere molecules). Let us introduce

V100 ] 6 \"* .
Mnoo = N2 = ~ |v100|7 (193)
(5k T /3mA)V/ 5T
12
V200 6 o
Mo = = (2 , 19b
0 = 5k T 3mA) 2 <5Too) f20e (196)

where M, ., and M, are, respectively, the Mach numbers based on the normal
and tangential components of the flow velocity at infinity. By the use of these
Mach numbers (instead of 014, and 0,4,) and of the original ratios ps,/p, and
Tw/ Ty (instead of po, and T ), the relations are summarized as

T
p;oo = -7::? <Mnocn Mtoo, ;oo’ 1—1) s (Mnoo < 1)» (203)
Pw T
Poo T
2 5y (M M 5.7 ) - M =) (20b)
Pw T,
DPoo T
—_— > fb (Mnoo, MIO(H T_, F) ) (MVIOO > 1) (200)
Pw w

The functions F; and F, have been obtained numerically using the GSB model of
the Boltzmann equation in refs. 4-7.

The aim of the present study is to derive analytical or explicit expressions of
F; for hard-sphere molecules without the restriction that the molecules of the two
species are mechanically identical, under the assumption of weak condensation,
i.e., for Mo < 101|010 K 1.

3. SLOWLY VARYING SOLUTION AND
FLUID-DYNAMIC EQUATIONS

In the present half-space problem, there is no a priori length scale of varia-
tion other than the mean free path /,, (or /). However, it was shown in the case
of a pure vapor that, when condensation is weak, there appears another length
scale of variation, which is much longer than /,, and may be characterized by
Ly /10100] (2.15.16) The solution with this length scale of variation, which may
be called the slowly-varying solution and is described in a fluid-dynamic way
(see below), plays an essential role in the present analysis. The slowly-varying
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solution also appears in the case of transonic condensation.('”) It should be men-
tioned that the notion of the slowly-varying solution was applied recently to the
analysis of half-space evaporation/condensation problems for a mixture of two
vapors.(23-20)

3.1. Integral Equations

Let us put € = |D10] < 1. We first assume that the length scale of variation
of the overall flow field is /,, /€, which is much longer than the mean free path /,,,
and look for such a solution ﬁl‘j (slowly-varying solution), where the subscript H
is attached to denote the slowly-varying solution. For this purpose, we introduce
the space coordinate y contracted by €, i.e.,

y = €xy, (21)

and assume that I:“ﬁ‘l = 1:";‘1()/, ;) [or aﬁg/ay = O(I:"ﬁ‘l)]. Then the Boltzmann
equation (8) is recast as

AEY 5 B M, A P
=t = - ZKﬂaJﬂa(Ff,,F;;), (@ = 4, B), (22)

ay eﬁ:A!B

We try to obtain the slowly-varying solution in the form of a simple power-
series expansion in €, i.e., a Hilbert-type expansion:

Fiy = Fio + Fiyye + P+ (23)

Correspondingly, any macroscopic_ quantlty hy of the slowly-varying solution
[i.e., h represents 1%, 0¥ (0§ = 0), 7 h, O (03 = 0), T,etc.]is expanded as

hu = hyo) + haae +huoe + - . (24)

The coefficients % ) in Eq. (24) are expressed in terms of ﬁ,‘fl(n) (n <m) by
substituting Eqs. (23) and (24) in Egs. (13a)~(13f) with 7 = hy and F* = F¢
(note that the relation between s and Fo is generally nonlinear) and equat-
ing the coefficients of the same power of € (the result is summarized in
Appendix B).

If we substitute Eq. (23) into Eq. (22) and arrange the powers of €, we obtain
the following sequence of integral equations for the coefficients 1:“1?‘1("1), which can
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be solved from the lowest order:

Z K P jhe (ﬁfj(o)a ﬁlo-[l(O)) =0, (25)
B=A.B
Z K7 [Jﬁa( H(m)> FH(0>) +.Jf ( H(0) Fg("”)]
B=A.B
aP‘I'(E[I(m l) Ba ﬁa o
=q—"=- > K ZJ Flrn-m Fiin)- (26)
B=A,B n=1

where m = 1, 2, ..., and Z? = 0 when m = 1 in Eq. (26).
Equation (25) shows that 1:“1"1‘,(0) are local Maxwellians with common flow
velocity and temperature, which are expressed in terms of ﬁ‘}‘m), Vi 0y (D31(0) = 0),

and Ty as

3/2
m” (& — 0ju0)
ooy =% | —=—] exp [-——L—L"0% ). 27)
nT, H(0) THo)
However, in view of the condition at infinity (12a), where 0,5, = —¢, we should
assume that
U110) = W) = 0- (28)

We further assume that

Ao =0, (or ﬁg(o) =0), (29)

for the following reason. We are considering the case where the parameter I'is
of the order of unity. However, I' is expressed as I' = (1/¢) f(nH(o) + nH(l)e +

-+ )dy because of Egs. (17), (21), and (24). If the condition (29) is not assumed, I"
becomes of the order of 1/¢. With these assumptlons the analysis can be carried
out consistently. To summarize, £} 10y and FE H(0) become

~ . 7 1(0) — exp ( gl + (% — U2H(0)) +& ) (30)

TH(O)
FBo =0, 31)
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Consequently, Eq. (26) with @ = A and that with @ = B are recast respectively as

JAAA(Fg(m)s ﬁlg(O)) + JAAA(FI;‘(O)’ ﬁlg(m))

A

aF[g( D m—1

m— ~ a A A

=0 = > KNI E iy Fiin)
Y B=A,B n=1

— KRPATBAES . Filo): (32)

K2 TP (Ffrop Frin)

aﬁlg m—1 > ) 7 - >
i D DY L D T RS EE)
B=A.B n=1

Equation (33) with m = 1 reduces to

jAB(ﬁlg(oy ﬁg(l)) =0. (34)

It is easy to show that the solution of Eq. (34) is given by a local Maxwellian with
the same flow velocity and temperature as those of F’ If}(o), ie.,

. it \"” 24 (&2 — Do) + 2
Ehy =il [ ——) exp|-m®>! MO T ) @35)
7 Th(o) TH(o)

It should be noted that, when £ o) = 0,the 07, and T /1.0 are given by (Eqs. B2b)
and (B2c¢) (with « = B), multiplied by fzfm, and are expressed as the moments of

B .
FH(I)'

. 1 A

”511(0) =3 ;“zF}i(l)d%, (36a)
UTZTe))

P = o [+ (2~ o) + )’ o)

HOY ™ 388 1 2~ Vam(0) 3 1 Fnyds

From Egs. (B1b) and (Blc) (« = A4) with Eq. (30) and Egs. (36a) and (36b) with
Eq. (35), we have

A A ~B . A ~ B ~
V2r0) = V2m(0) = V2H(0)> T, H(O0) = T, HO) = TH()- (37)

Then, F fmy (m=1,2, ..) are determined by Eq. (32), and F omy (m =

2,3, ...)) by Eq. (33), if they are solved alternately. Since F ;}(0) is a local
Maxwellian, the left-hand side of Eq. (32) is essentially the linearized collision
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operator (for a single-component gas) on F If}(m), whereas that of Eq. (33) is the

. .« . ~B
linear collision operator on Fy; ..

3.2. Fluid-Dynamic Equations
Since the homogeneous equation corresponding to Eq. (32), i.e.,
J(f, Fiiy) + T (Fiig). ) =0, (38)

has the nontrivial solutions f = (I:" g(oy & F g(o), ¢ jZﬁ ;}(o)), the right-hand side of
Eq. (32) should satisfy the following solvability conditions:

/ (1, & ¢7)[RH.S of Eq. 32)]d°¢ =0, (39)
which can be transformed to the following form (m =1, 2, ...):
d A
S&m—l) : E/QFf}(m—l)dBC =0, (40a)
4 .4 - B Y 3
Si(m—l) : E m é‘ICiFH(m—l)d ¢ =0, (40b)
p=A.B
sho L n? 2 yd®C =0 (40c)
4(m—1) * dy m 4‘1;]‘ H(m—1) ¢=0. Y
B=A.B

Equation (40a) follows directly from the first condition of Eq. (39) because of the
property (Al). Equations (40b) and (40c) follow respectively from the second and
third conditions of Eq. (39) if Eq. (33) as well as the properties (A2) and (A3)
is taken into account. Then, the solution F I_A}(m) to Eq. (32) is expressed in the
following form:

5 A pA (A 4 A 22 A
Friomy = Fr) (CO(m T+ Cimybi t C4(m)§j) + W) (41)
where ¢i(,, ., ¢/()» and ¢y, are unknown functions of y, and W, is the particular

solution satisfying the condition
f (1, &, ¢HWGd s = 0. (42)

With Eq. (42), () Ci(m)» and ¢4, are uniquely expressed in terms of 7y,
011y and T,y (n < m).
On the other hand, the homogeneous equation corresponding to Eq. (33), i.e.,

JB(Efo )= 0. (43)
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has the nontrivial solution f = F g( 1 [see Eq. (34)]. Therefore, the right-hand side
of Eq. (33) should satisfy the following solvability condition:

/ [R.H.S of Eq. (33)]d°¢ = 0, (44)

which reduces to
S(;B(m—l) : %/flﬁg(m—1)d3§ =0, (45)
because of the property (A1). Then, the solution of Eq. (33) is obtained in the form
Fiiony = oiom Pl + Yy (46)

where cg(m) is an unknown function of y, and \I/(lfn) is the particular solution
satisfying the condition

/ (m)d3§ =0. (47)

With this condition, ¢ff,,, is expressed as ¢y, = 7y /A1)

By using Eqgs. (30), (31), (35), (41), and (46) successively in Egs. (40) and
(45), we obtain sets of ordinary differential equations for macroscopic variables,
as we will see. These equations are the so-called fluid-dynamic-type equations.
Here we only give the explicit forms of £ 13(1) and F 5(2) and the fluid-dynamic
equations obtained in this stage.

If we substitute Eq. (30) into the solvability condition (40) with m = 1 (recall
that £ 13(0) =0), SIA(O) gives

a5
PHO) _ ’ (48)
dy
where pr) = ﬁ,‘_’,(o), and the other conditions are satisfied automatically.
With the condition (48), Eq. (32) with m = 1 is solved to give

"A A
Py | Oy = 5 TH(I)
Fiioy = Fiio +2 GH\E =3
@ R 2) T
N A2
1 dTyw ~ .~ T dzH(o
— Qfa@) - A28 5 B(E) (49)
puoy dy PH©)
where
~ & —ViHe ~ ~ . N .
L= = CH'2 Do = dsuoy =0, 3y =0,  (50)
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and the functions A(¢) and B(¢) in Eq. (49) are defined in Appendix C. It follows
from Egs. (B2f), (B2g) [with Egs. (B2d) and (B2h)], (29), and (37) that

A . 5 4 A
Vigay = ViH()> Ty = Tha)- (51)

The substitution of the explicit forms of F 1?(1) [Eq. (49) with Eq. (51)] and F 5(1)
[Eq. (35)] into Egs. (40a)—(40c) with m = 2 leads to the following fluid-dynamic
equations:

d

& (AH©180)) =0, (52a)

d .
% a; Py =0, (52b)
(ﬁH(O)ﬁlH(l)ﬁzH(O) - %YA‘ [1{/(5)61”;5(0)> =0, (52¢)

d|. .
— | g0
dy HO)V1H(1)

o Sl

. 5 aipdl R db
> 172 @1 H(©0) 12 A 2H(0)
HO) + U2H<0)> ~ 172Tho o " T10)021(0) }

=0, (52d)

where y; and y, are the constants defined in Appendix C and have the numerical
values

= 1270042,  y, = 1.922284. (53)

The y, and y; are, respectively, related to the viscosity and thermal conductivity
of the vapor (see Appendix C). Here, Egs. (52a), (52b), (52c), and (52d) follow
from Sy,), Si{1)> Si(1)» and Sy, respectively.

On the other hand, S(ﬁl) [Eq. (45)] with Eq. (35) is automatically satisfied.

Therefore, Eq. (33) with m = 2 can be solved to give the following F 5(2):

5B 5 | e | a0 s 52 3\ Tuo
Fray=Fuqy | 75— +2m —5 G+ |\ me =5 ) =

"h(1) H(0) Th(0)

1 df Ty db

H(0) ~ ~ H(O 2H0) ~ ~ ~
— O B x =1y - OO 5 BEE X = 1)
PHoy dy puoy dy
11 dbpg-

+

% DG X =1 |, (54)
Pr©) by 4y

where A8(¢; X1), BB(¢; X*), and DAB)(¢; X4) are the functions of ¢ depending
on a parameter X* (0 < X4 < 1)as well as % (= m®?/m*) and d® (= d® /d?),
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which are defined in ref. 27 and computed in ref. 28 [they are denoted by 4%(¢),
B2(¢), and DA®B)(¢) there]. The X“ corresponds to the concentration of the A4-
component at the zeroth order in € (X4 = ”7}(0) /nH@)), so that only 4%, B2,
and D4®) at X4 =1 occur in Eq. (54). The definitions of these functions are
summarized in Appendix D. Setting n’fl(o) = 0 in Egs. (B3b) and (B3c¢) (with o =
B)multiplied by n 11?1(0) and using Egs. (28) and (37) (note that 05, ;) = U3¢0 = 0),
we have

Az%-[(l) /(é’z — UIH(O))FH(Z)d g, (55a)
H(l)

~B
I’lH 2 ~
Tg(l) T 358 /@/ UL O)) FH(z)d3§ - ( )) Th()- (55b)
H(1) At

Substitution of Eq. (54) into Eq. (55a) yields

~1/2 72
. T 1 dpy . darT,
~B A x H(O) H(1) * H(O) H(0)
VU — ViH() = A = = - D 3‘1, (56)
iH(1) iH(1) ( BA pfl(l) Dro) dy TB pH(O) dy i

where 8, is the Kronecker delta, A% , and D% ,, which are constants depending

on m? and d, are defined in Appendix D, and their numerical values are given
there (Table III). On the other hand, Eq. (55b) with Eq. (54) gives

T80 = Tuo).- (57)

If we substitute the explicit form of H2 [Eq. (54)] into the condition Sg,) in
Eq. (45), we obtain

d . .
5("?](1)”?}1(1)) =0. (58)

To summarize, Egs. (48), (52a)~(52d), (56) (w1th i =1), and (58) with
the relations pg) = nH(O)TH(O) [Eq. (B1f)], pH(l) =m nH(l) [Eq. (B2a)], and
pH(l) = nH(l)TH(o) [Eq. (B2d) with 7 A0y = 0] form a set of fluid-dynamic equa-
tions for A 10y, Ar0), Ty D210y, D11y pH(l), PH(l), nH(l), Biicry and o). I
we proceed to the next order, the conditions 80(2), Sl 2y 84(2), and 80(3) give the

fluid-dynamic-type equations for the quantities of the next order and do not add
any constraint for the leading-order quantities listed above.
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4. BOUNDARY CONDITIONS FOR FLUID-DYNAMIC EQUATIONS
4.1. Knudsen Layers

In Sec. 3, we have derived the slowly-varying solution and associated fluid-
dynamic equations, regardless of the boundary condition on the condensed phase.
The solution is meaningful only when it can be made to satisfy the boundary
condition or can be matched with another solution that satisfies the condition. To
study this problem, we first expand the boundary conditions (10a) and (10b) in
€. Let us suppose that the original (dimensionless) velocity distribution functions
F4 and F® are expanded in € as

Fé= g+ Flye + Fge +-o . (@= 4, B). (59)

Then, Eqgs. (10a) and (10b) lead to the following boundary conditions for the
component functions £, of the expansion (59):

A

Fipy = ﬁg(m)’ (&1 >0, x; =0), (60)
withm =0, 1, 2, ..., where
FA‘uI:I(O) = 7'[73/2 exXp (_512)7 ﬁ‘,ﬁ(m_‘_l) = 0, (613)
I’;IB 3/2
Fony = (7) &pmy XD (=P ), (61b)
62 = 2" [ iy =0, g)de. (610)
£1<0

Now let us try to fit the slowly-varying solution (23) to the boundary condition
(60). Equation (31) obviously satisfies Eq. (60) with @ = B and m = 0. It is seen
from Egs. (30) and (35) that F g(o) and F 5(1) satisfy, respectively, Eq. (60) with
(o = A, m = 0) and that with (0 = B, m = 1) if we assume that 7 y;(g), f"H(o), and
U210y take the following values on the condensed phase:

;lH(()) =1, 7’\11.[(0) =1, 1321.[(0) =0, at y=0. (62)

However, the higher-order terms 1:"1"1‘,(,”) (m>1lfora = Aandm > 2 fora =
B) do not have enough freedom to satisfy the corresponding boundary conditions
(60) (m =1 for « = 4 and m > 2 for & = B). For instance, in order to make
F I_A}(l) [Eq. (49) with Eq. (51)] and F 1{’}(2) [Eq. (54)] satisfy the corresponding
boundary conditions, we have to impose df"H(O)/dy =d0yn)/dy = dﬁfl(l)/dy =
0 inAaddition to 13[/‘1(1) = fH(l) =015¢1) =2y =0 at y = 0. These conditions
for Tr0), V21(0), and Dy p(1y and Eq. (62) are too many in view of the form of
Egs. (52a), (52¢), and (52d) and the fact that T, H(0)> V20(0), and Dyg(1y should
satisfy some (independent) conditions at infinity [see Egs. (79) and (80)].
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Therefore, we seek the solution satisfying the boundary condition in the

form P = P2+ F2, (632)
Fe=Flye+ Flpe+- . (63b)
FE=Floe + Fipe +--- (63¢)

where ﬁg is a correction to the slowly-varying solution in a layer with thickness
of the order of the mean free path [or x; < O(1)] adjacent to the condensed phase
(Knudsen layer) (cf. ref. 2). We assume that its length scale of variation is of the
order of the mean free path, i.e., Fe = F["é(xl ;) [or 8F1°<‘/8x1 O(F,‘;‘)] and
that it vanishes rapidly as x; tends to infinity. The expansion of F 4 (or F By is
started from F;) (or F2,)) because Fjj, (or Ff)) can be made to satisfy the
boundary conditions with the choice (62) of the boundary values.

Corresponding to Eq. (63), the macroscopic variables /4 (h = a®, Of, 7<, A,
Vi, T , etc.) are expressed as

h=hyg+hg, (643)
hg = h[(([)E + ]’l[((z)éz + e (64b)

The relation between /g and F,% is obtained by inserting Egs. (63) and (64) into
Eqgs. (13a)—(13f) and by taking into account the relation between / 5 and FI‘;‘, The
result is omitted for conciseness.

Substituting Eq. (63a) with Egs. (23), (63b), and (63c) into the Boltzmann
equation (8) and taking into account the fact that (i) Fﬁ‘, is a solution of Eq. (8),
and (ii) F ¢ can be Taylor expanded in x; variable as

. OFH,
FFA}Z(FH(O))J)‘*‘ |:(F13(1));,+( ay”) X1:|€+--~ ; (65a)
b
- . ) IFE
(1)
Fj = (Fg(l))bé + |:( 13(2))1, + (T) x1:| €4, (65b)
b

where (), indicates the value at y = 0 (or x; = 0), we obtain the equations for
Fz(m) On the other hand, the boundary conditions for Floé(m) on the condensed

phase are derived from the requirement that £ ) = =F oy + F,"é(m) satisfy Eq. (60)
for m > 1 when « = A4 and for m > 2 when « = B. Furthermore, the condition
Fz(m) — 0 as x; — oo should be imposed.

Here, we give the expllclt form of the equations and boundary conditions

only for the leading terms: £ k() and EE k(- We first let

FK(l) = E*(£)¢", Fg(z) = (A5 EP (09", (66)
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where E4(¢) and EB(¢) are defined by Eq. (C3). Then, the equations for ¢ and
¢® are given by

do ~

zlai;l — T4, 9, (67a)
068 e

G5 = KABLAB (¢4, ¢%), (67b)

where LA is the linearized collision operator defined by Eq. (C4). The correspond-
ing boundary conditions on the condensed phase can be written in the following
form:

R . R A 5
¢! = — Py — 20100)s81 — 2020010682 — (Traiy)s <§2 - 5)

dT,
+(—d’“‘”) <;>+< 2’“0)) G6B(©),  fore >0 atx =0,
y dy

(68a)

5
¢F = kB — 2 (b10)1 — 2 Da1))v2 — (Tuy)s (m ¢r - 2>

+ (d?;“”) G AP X = 1)+ <M> O6B (@ X =)
b b

dy

1 dpy)
- — 4PHm oDWB( x4 =1), forg; >0 atx; =0,
(pH(l))b dy b

(68b)
with

. . I . d T AL
Ky =— (@) (@D )s — E(THU))” + (i)' ( dy( )) Drg
b

@B (dpha)\ ., )
S0 ) Ay =2 | ae”EP@de (69)
(IOH(I))b y b 01<0
On the other hand, the conditions at infinity are simply
¢ — 0 (rapidly), as x; — 0o, (70a)
¢% — 0 (rapidly), as x; — oo. (70b)

Equations (67a), (68a), and (70a) form a half-space boundary-value problem
of the linearized Boltzmann equation for a single-component gas, which is known
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as the Knudsen-layer problem. This problem has a unique solution only when the
constants (ﬁf_’[(l))b, (Try)s, and (D21(1))s are related with the constants (D1 4(1))s,

(dTy0)/dy)s, and (dDs0)/dy)s in a special manner.® This is a consequence of
the theorem first conjectured by Grad in 1969*®) but proved much later by Bardos
et al.®Y for hard-sphere molecules. The theorem has also been proved for more
general molecular models.3!:3? The relations among the constants mentioned
above are given explicitly as®

A ‘n dr,
(Pf[(l))b = C;(01aays + G ( d}j}(O)> , (71a)
b
. A dT,
(Tray)s = dy (1) + di ( dl;(o)> : (71b)
b
R dv
(D) = —ko (%) : (T1c)
y b

where Cy, Ci, dj, di, and ko are constants. Equation (71a) gives a boundary
condition for the present fluid-dynamic equations. It should be mentioned that
Egs. (71b) and (71c) form a part of the boundary condition for the higher-order
fluid-dynamic equations. The constants occurring in Eq. (71a) for the present
hard-sphere molecules are given as [see Eq. (3.78) in ref. 2]

C; = —2.1412, C, = 1.0947. (72)

Suppose that the solution ¢ is known. Since ZAB(qu, ¢B) = ZAB(O, o5 +
LAB(¢4,0), and LB(0, ¢®) is the linear collision operator for ¢Z, Egs. (67b),
(68b), and (70b) form a half-space boundary-value problem of the linear
Boltzmann equation with the inhomogeneous term K“43L48(¢4, 0). The half-
space problems for the linear Boltzmann equation has been investigated math-
ematically (e.g., refs. 33-35). Let us now assume that «2 in Eq. (68b) is an
undetermined constant, putting aside Eq. (69). According to the theorem by Ark-
eryd and Nouri®¥, the constant « 2 is uniquely determined without any constraint
on the other constants (D1 z¢1))s, (D21(1))p5 ---» (dﬁf,(l)/dy)b contained in Eq. (68b),
and the relation

/§1¢BEB(§)d3§ =0, forx; >0, (73)

holds (in ref. 35, the theorem is proved for the linear Boltzmann equation without
an inhomogeneous term, but the theorem holds also for the case with an inho-
mogeneous term satisfying [(-)Efd*¢ = 0 ©9). From Eq. (68b) and Eq. (73) at
x1 = 0, we can calculate f§l<0 O¢PEB()d ¢ atx) = 0 interms of k2, (D1 1)),
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(Tr1))» (dTr0)/dy)s, and (d ply ;) /dy)y. Using this result in Eq. (69) and taking
into account Egs. (56) and (62), we obtain

(ﬁfH(l))b =0. (74)

That is, Eq. (69) is equivalent to Eq. (74).

In summary, the boundary conditions on the condensed phase for the fluid-
dynamic equations are given by Egs. (62), (71a), and (74). It follows from Egs. (58)
and (74) that

Oty =0, (for y > 0), (75)

holds. This conclusion is obvious from Eq. (18).

4.2. Conditions at Infinity

Finally we should mention the boundary conditions at infinity for the fluid-
dynamic equations. We assume that only p., among the parameters poo, Too, D200
and I" depends on € and expand it as

Poo = Poo(0) + Poo(1)€ + Poo@)€ + -+ . (76)

This assumption does not lead to any contradiction and is consistent with the fact
that we are trying to obtain the expansion of the function F; in Eq. (20a) in M,
(or €) when M, is small. Here again, we consider the expansion (59) of the
original velocity distribution functions F4 and F®. Then, from Egs. (12a) and
(12b), we have the following boundary conditions for the component functions

o .
£e:
Fony = Faomy

(x; = 00), (77)

withm =0, 1, 2, ..., where

- 2 A2 22
A4 Poo(0) &+ (&2 — D200)” + &

Fooo) = a5 752 exp (— 7 , (78a)

o0 oo

A Dol 81\ A4

Fa . = ( - 2A—> F2 o 78b
oo(1) Pool0) T 00(0) ( )

FE,y=0, (m=0.1"). (78¢)

The slowly-varying solution Fﬁ‘, should satisfy the condition (77). From Egs. (30)
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(with ﬁH(O) = ﬁH(O)/fH(O)) and (35), we have

(B0 = Pty (Tro)oo = Toor (0201000 = D200» (ﬁlz[(l))oo =0,
(79)
where () represents the limiting value at infinity. From Egs. (49), (51), and (54),
we obtain the following conditions:

(Pii)a = Pootnyr (D1 = =1, (D2m1)) o, =0,
(fH(l))m = O’ (ﬁf[(z))oo = O’ (80)

because Eq. (79) implies that (d Tr(0)/dY)eo = (dV211(0)/dY)oc = (dit gy /dY)oo =
0. Equation (79) and the first two conditions of Eq. (80) serve as the boundary
conditions at infinity for our fluid-dynamic equations summarized at the end of the
preceding section. The rest of Eq. (80) provides a part of the boundary conditions
for the fluid-dynamic equations of the next order in €.

5. SUMMARY OF THE FLUID-DYNAMIC EQUATIONS AND THEIR
BOUNDARY CONDITIONS

In Secs. 3 and 4, we have derived the fluid-dynamic equations and boundary
conditions for the macroscopic variables of the slowly-varying solution. Here, we
summarize them for later convenience. The equations are

a5
Lo — o, (81a)
dy
d
— (no? =0, 81b
dy( HOD1H)) (81b)
d (. A A Y1 4172 dﬁzﬂ(())
E (nH(O)le(l)UZH(O) - ?TH(O) dy =0, (81c)
dl. 34 n S s diH(O) ~1/2 A dby0)
@ ["H(O)WH(I) <§ The + U§H(0)> RO dy =N Tygyvenoy—— [ =0,
(81d)
a. . ~B
E(IUH‘” + Puay =0, (8le)
R j~1/2 1 dﬁB . ]21/2 df’
Dua) = — A g 0 o Dy O D &1)
M=Nyqy PH(O) dy PHoy dy
Pr©) = b 7 H(0)s (81g)

ﬁg(l) ZﬁZ(l)fH(O% (81h)
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where y; = 1.270042, y, = 1.922284, and A}}A and 13’}3 are given in Table III
in Appendix D. The boundary conditions on the condensed phase (y = 0) are

(o) =1, (Tro)s = 1, (D2m(0))» = 0,
. n dTho 82
(Prrays = Ci(@imays + C dy( I (82)

b

where C; = —2.1412 and C; = 1.0947, and those at infinity (y — 00) are

(PH©0))oo = Poc(0)s (fH(O))oo =T, (D280))o0 = V200>
p (83)
(”f](]))oo =0, (Phy)oe = Poo(1)s (V1H1))0e = — 1.

Here, Eq. (75) has been used.

6. SOLUTION TO FLUID-DYNAMIC SYSTEM

In this section, we solve the fluid-dynamic system summarized in Sec. 5 to
obtain the macroscopic quantities of the slowly-varying solution.

First of all, we recall that the parameter I" is defined by Eq. (17). If we use
the expansion of A% = 7% + 7% in Eq. (17) and note that 7%, is the function of y
[Eq. (21)], T is expanded as

['=Tg+ e +Tpe*+---, (84)
where
0
Lo :/(; ﬁga)dy’ (85a)
0
Lo :./0 ﬁg(z)dy’ (85b)
0 00
T = /0 Aady + /0 AR ydx1, (85¢)

Since we can assume without loss of generality that I" is independent of €, we let
gy =T =Tg =---=0,sothat

o0
=T = /0 Aiydy. (86)

The condition I'(jy = ') = '3y = - - - = 0 gives natural constraints for higher-
order fluid-dynamic equations.
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Let us go back to the fluid-dynamic equations. Equations (81a), (81g), and
the first two conditions in Eq. (82) show that

From this and the first condition in Eq. (83), we find that
Poo() = 1. (88)
Equations (81g) and (87) give i1 g0y = l/f"H(o). Therefore, from Eq. (81b) and the
conditions at inﬁnity (83), we have ﬁH(o)f)ly(]) = (ﬁ H(O))oo(ﬁlH(l))oo = — l/foo
To summarize,
Anoy = 1/Tuo), D1ty = — Troy/ Too- (89)

The integration of Egs. (81c) and (81d) with Eq. (89) leads to the following
equations:

| 1~y dVapo)

— U + —nT, =0, 90a
T 2H(0) 5 Y14 o) dy ( )

1 (5~ 5 1 AT
— (=T — 2 + ST =0, 90b
T <2 H(0) 2H(0)) 4)’2 H(0) dy (90b)

where

V2H(0) = D2H(0) — V2005 Tuo) = Troy) — Two- 1)

Here, the condition at infinity (79), together with the fact that dv,x(0)/dy and
d Thoy/dy vanish at infinity, is used to fix the two arbitrary constants contained in

Egs. (90a) and (90b).
Equation (81¢) and the condition at infinity (83) give
13}41(1) = laoo(l) - 131{;1(1) = ﬁoo(l) - ﬁf](l)fH(O)' 92)
On the other hand, using Egs. (81h), (87), and (89) in Eq. (81f), we have
d [ . mE B Ds dInT,
— (mif)) = Tty + ( T8 1) — 10 (93

dy AT Ap4 dy

We will obtain the solution to the fluid-dynamic system separately in the
following three cases:

e Casel: 0ypo = 0 and YA}A,O =1,
e CaseIl: oo = 0and T, # 1,
e Case III: 0y # 0.

e Case I (D200 =0 and Tx, = 1)
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In this case,
Uar(0) = 0, Ty = 1, (94)

is the obvious solution of Egs. (81c¢) and (81d) satisfying the boundary condi-
tions (D210)s = 0, (Tr))s = 1, (D21(0))o0 = D200 = 0, and (Tx(0))oo = Too = 1.
It follows from Eq. (89) that

Ao = 1, Uiy = —1. (95)

Then, Eq. (93) with the condition (86) gives the following ﬁf,(l) that satisfies the
condition at infinity (717},,))ec = 0:

R m® mB
ng(l)z—ATMrexp AEAy . (96)

(Note that A’g 4 1s negative, as shown in Appendix D.) If we substitute Eq. (92)
with Eq. (96) into the last condition in Eq. (82), we have
~ B
. m .
Poo(y = ==~ = Cy. )
Ay

In consequence, we obtain 131/_‘1( N in the following form:

g1 1 i’ ¥ 8
pH(l)__ATF — &Xp At y]|—Cs (98)

BA BA

e Case II (000 = 0 and T #1)
In this case,

Var0) = 0, 99)

is the obvious solution of Eq. (81¢) satisfying the boundary conditions (024(0))s =
0 and (D21(0))oc = V200 = 0. Then, Eq. (81d) is transformed into

21 dT L1y dT, 2 (v d
T = (15 S0 ) e (-—— [ 207). a0
dy dy ), VT Jo Ty,

Because of (f" u©)» = 1, Eq. (100) indicates that T, H(0) 1S monotonic in y, or
T, (o) = const. But, the latter case is possible only when foo = 1, which is the

Case 1. Therefore, T, H(0) 1s monotonic in the present Case II. In consequence,
Eq (90b) with 521-1(()) = O, i.e.,

di}-[(()) 2 fH(O) — Too
d +—= ~1/2
y Y2 Too TH(O)

=0, (101)
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with the condition (7A"H(0))b = 1 is solved implicitly as

. Tu)
2 1 s —Ts

| Ve | Tro — V) (1 + V)
=" Too TH(O) —1 =+ B In = = ~ . (102)
(y Ty +V Too) (1 = V To)
It is seen that Eq. (102) verifies the condition at infinity (T H(0))oo = 7. With this

T, H(0), the solution 71 ) and Dy 4(1) are obtained from Eq. (89).
Equation (101) is transformed as

s12 . V2po d A o

TH(O) = —7T00511’I|TH(0) — Too| (103)
By substituting this in the first term on the right-hand side of Eq. (93) and inte-
grating it, we obtain
B D5/ A% )—1

, (104)

5 . o |~/ /A% )
nyay = Ar(Th)) ‘

‘fH(O) — T

where A, is an arbitrary constant, which should be related to I. Thaf is, we insert
Eq. (104) in Eq. (86) and change the integration variable from y to Ty with the
help of Eq. (102) and the monotonicity of T () in y (v € [0, 0o) corresponds to
T, Ho) € [1, T so] ). With further change of the integration variable from T, H(o) to ¢
defined by T, H(0) — f"oo =(- f"oo)t, we obtain the following relation:

T = (12 Too/2)|1 — Tog |20 1850 G(To) Ay, (105)
where
R U b R %,%
G(fy) = / T [T+ (= T B Can (106)
0

Therefore, ﬁfl(l) is obtained as

2 r e (1T — Tl N 2 2ha
5y = ————(Tu) s 1710 — Tool , (107)
V2 TooG(Too)
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where f"H(o) is given by Eq. (102). If we substitute Eq. (92) into the last condition
of Eq. (82) and note that

. 1 d Ty 2 (I — 1)
D11y = == —_— ) =,
Too dy , 2 T
W = — ot (108)
n p = — =,
O T G(T)

which follow from Egs. (89), (101), and (107), respectively, then we obtain the
following expression of pog(1):

) 12 T 2 . .
Pool) = = | ———— 4+ —C1(Tos — 1) = C|. (109)
T L12 G(Tx) 72

Finally, ﬁj_’l( 1y is given by Eq. (92), where poo(1), ﬁz( 1y>and T H(0) have been obtained
in Egs. (109), (107), and (102).

e Case I1I (05 # 0)
With Eq. (89), we can transform Eq. (81c) into the following form:

a1 dD a1 dD 2 Yod
12 AV2H(©0) 172 AV2H(0) y
Tio =g, ‘(TH<°> dy )f"p <_>/1f /0 T17> (1o
o0 H(0)

Since (f’ H(0))» = 1, this indicates that 0,z ) is monotonic in y, or V) = const.
But, the latter case, which is possible only when ;) = U20c = 0 because of
Egs. (82) and (83), is the Case II. Thanks to the monotonicity of 0,4 [0r V24(0)

in Eq. (91)] n y, W€ can regard fH(O) and TH(()) as functions of ﬁZH(O) or '1721-[(0)
(v € [0, oo) corresponds to D20y € [0, D200] OF Vapr(0) € [—D200, 0]). Tllen, from
Egs. (90a) and (90b), we obtain the following differential equation for T q):

dTuey,  n (Tno 2~
po ()—— = ()__UZH(O) =0. (111)
dvopoy  v2 \V2m@0) S
The condition for Eq. (111), corresponding to (f HO)b = 1,18
TH(O) =1-Tx, at V2p(0) = —V2cc- (112)

Equation (111) with the condition (112) is solved readily and gives the following
TH(()) (= TH(()) + T,) as a function of ’1721-1(0) (1721-1(()) < 0):

4|
A s 2y s 2 N . —Vam0) | 2
T = Too — =11 T N 4 e (UN R
1O = T = 55, —yy 2o F 52— ) T

(113)
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Then, Eq. (90a) with the condition

V25(0) = —D2c0> at y =0, (114)
is solved implicitly as
ylf’ szH(O) n - dS
y=—-"—= [TH©o) (V210 = S)]I/ZF. (115)

—V200

To summarize, T 1) (in terms of D5 1()) and D24 (o) are, respectively, obtained as

- - 2 7 . .
Tuoy = Too — gm(vzm()) — Dae0)?
4|
n 2 3 — 2
+(1_Tw+— n féw) (”2“1 ”2’”) T e
52y, =1 D200
vilo [P0 . dt
y=—-"—= / [Tro)(D2m0) = )]/ ———. (117)
2 0 t — V2o

These solutions satisfy the boundary condition at infinity: (f"H(O))oo = T and

(D210))00 = D200 [Eq. (83)].
Equation (90a) is transformed into

~_1)2 Vip d ~
Thoy = —?Tooaln(—vzH(O)), (118)

which is substituted in the first term on the right-hand side of Eq. (93). Then the
resulting equation is integrated readily and gives

A A ~ B Ak A* Y ~ _ ~B Ak
”Z(l) = Ap11(Tr) "™ Pro/ 8= (=T )~ /D0 /8500, (119)

where A;;; is an arbitrary constant, which is to be related to the parameter I" by
Eq. (86). That is, we substitute Eq. (119) into Eq. (86), change the integration
variable from y to 5211(0) with the help of Eq. (115), and introduce the new

integration variable t by 7, H(0) = — V200t Then, we obtain the following expression
of I':
T = (1 T /2)(B200) ™" 1550 Ho(Ti D200) 111, (120)
where
Hi(Ta, B200) /lté‘ffﬂl 7 2 o o, 2
. , U = BA e}
7Aoo T200 0 X 52y -y 2
wBbre

~ 2 n | A% 2
+<1 —Tw+—Lﬁ§m>tQ} a2
52y —n
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with j =0, 1 [H;, will appear in Eq. (134)]. Therefore, the solution ﬁg(l) is
obtained as
_n B

by 2 r A 'hz*ﬁ—l V2o — V2m0) \ 2 %ha
H(l) = #(TH(O)) B4 — . (122)
V1 Too Hy(Tso, D200) V2o

where 7, m0) and V(o) are given by Egs. (116) and (117), respectively.
We now note that the following boundary values are obtained from Egs. (89),
(90b), and (122):

. 1 dTh o) 2 ( 2 >
v = -, = < - 14 - U ,
(O1H))b 7 < v ) T i 5 V200

2 r
14! fooHO(fOOa IA)Zoo).

(123)

(ﬁZ(l))b =

Substituting Eq. (92) into the last condition of Eq. (82) and using Eq. (123), we
obtain Py in the following form:

1 [2 r 20, (. 2
T[ —i——l(T 1+5v200)—ij]. (124)

Doo(l —
= 14! HO(Too’ UZoo) V2

Finally, with poo), 717, and Tr(0) given by Egs. (124), (122), and (116), ﬁl{l](l)
is given by Eq. (92).

In this way, the macroscopic quantities ﬁH(o), ﬁZH(O), ﬁlH(l), fH(O), ﬁg(l)’ and
ﬁf[(l) are determined for specified U500, T, and T'. The quantities Poo(o) and Poo(1)
at infinity are not at our disposal but are determined from v;, T o, and T, Tt
should be noted that the flow velocity 0,0y and ;1) and the temperature T H(O)
of the mixture do not depend on I', so that they are the same as in the case of a
single-component vapor (I" = 0). In fact, the results of Cases [ and [l with ' = 0
have been obtained by Sone!!¢?.

We observe that

lim Ho(Too, D200) = (72/11)G(Two), (1252)

sz%
. lim OHO(TOO, b2oc) = (2/1) lim G(Tno) = —(11/2)(A% 4 /1)
o1, Voo™ I

(125b)

Therefore, the results for poo in the three cases, Egs. (97), (109), and (124), can
be unified in Eq. (124) by defining Hy(7, 0) and Hy(1, 0) as the corresponding
limiting values.
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7. PARAMETER RELATION

In Sec. 6, we have solved the fluid-dynamic system to obtain the macroscopic
quantities of the slowly-varying solution. As a result, we have obtained the ex-
pressions of Py and poo(ry that are given by Eqs. (88) and (124). With these
expressions, Eq. (76) gives the desired relation among parameters. We summarize
the result using the parameters appearing in Eq. (20a). That is, the relation (20a)
for small M, is given as follows:

’"B [7*
P 1+(5)‘” (k)‘” 3(1;«»>mii+é r
Pw 6 Ty 1 \ Ty Ho(Too/ Ty Mico)

2C1 M2 * 2
+— ” T_ 3 +1)=1|=-Ci{ Myso + O(M,.),
w

(126)
where
Ty
H; (T_w, Mtoo)
(T (e (37 (1x)",
“\7, N1, \6 T, foo
=/1t Q%A’E - 1[1_1_)/1 M?_t?
0 32— ™
T, 1 FE v
Y1 2 bl by
2 —1+-—" M )tyz:| dt, 127
(Too 32—y (127)

with j =0, 1 [H; w111 appear in Eq. (134)]. Here, m? has also been replaced by
the original m?/m“. Note that A% B4 DT > and thus H; depend on m®/m* and
dB/d*.

8. PARTICLE-FLOW RATE OF THE NONCONDENSABLE GAS

When the vapor flow at infinity has a tangential component (02, # 0, or
M, # 0), there is a macroscopic flow of the noncondensable gas along the
condensed phase. Let us denote by N, the total particle-flow rate (per unit width
in X3 and per unit time) of the noncondensable gas in the X, direction and by N 7
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its dimensionless counterpart, which are defined respectively as

Ny :/ nfvldx, (128a)
0
A 2 Nf
== : . 128b
Ny T Noolog(2k Tog /mA)1/2 (128b)

Let us consider the case of arbitrary M,,,. The solution of the original half-space
problem is determined by specifying the four parameters, Moo, Mico, Too/ Tws
and I', when M, < 1 [cf. Eq. (20a)], and five parameters, M,,o0, Miso, Too/ T,
DPoo/Pw, and T satisfying Eq. (20b) or (20c), when M, > 1. Since N 1 is de-
termined uniquely by the solution, it may be considered as a function of the
parameters listed above, i.e.,

. T.

Ny =G, (Mm,Mm,T—”,r), (Myoo < 1), (1292)

~ T Poo

Ni=Gp Moo, Mio, —, 2T ), (Mpeo > D). (129b)
Tw Pw

Here, we try to obtain the leading-order term of Eq. (129a) when M, < 1.
Since 7,1y, = nools holds for hard-sphere molecules, Ny can be expressed
as

oo
Ny = TO;W/O AB0% dx,. (130)
By substituting the expansions 7% = i} | € + (if ) + A% p)e* + -+ and b7 =
030y + (0301 + O3gry)€ + - - - into Eq. (130) and taking into account the prop-
erty of the slowly-varying solution, we obtain the following expansion of N rin
€:

Ny =Ny + Nye + Nyoe? + -+, (131)
where
9 H—1/2 ©
Nioy = T5" /0 A D250y 4V (132)

etc. (Note that ﬁfK(l) is not zero but is defined in terms of F 1?(2)-) Here, we
recall that ﬁfmo) = Uap(0) = V2H(0) + V200 [Eqs. (37) and (91)] and change the
integration variable from y to U, () with the help of Eq. (115). Then we have

0 7172
- Y14 A ~ ~ H(O0) ;~

Ny = __TI/Z/ nf,(l) (U2H(O) + Uzoo) = © dV2 (o). (133)

—2e V2H(0)
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Using Eq. (113) for Ty and Eq. (122) (with 95a — D241(0) replaced with —54(0))
for ﬁg(l) and introducing the new integration variable ¢ by V) = — D200t as in

the derivation of Eq. (120), we finally obtain the following expression for N 7

N_I"T 1/2,\00 1_ Hl(z:oo»l?oo) +O(€)
Hy(To, V200)
5\'? Hi(Too/ Tips Mioo)
(6) ! |: HO(TOO/Tw» Mtoo):| * ( ) ( )

where H; and ‘H; are defined by Eqs. (121) and (127), respectively.

9. SOME NUMERICAL RESULTS

In Secs. 68, we have obtained the analytical solution to the fluid-dynamic
system and explicit expressions of the parameter relation and of the particle-
flow rate of the noncondensable gas. The results contain some integrals to be
evaluated. For example, the parameter relation (126) and the total particle-flow
rate (134) contain, respectively, Hy and H; defined by Eq. (127). With the values
of A’g 4 and ﬁ’} 5 given in Appendix D (Table III), the integrals in Eq. (127) are
integrated numerically by means of the Simpson rule for a given set of values of the
parameters (Moo, Too/ Ty, m®/m4, d®/d?). The results are shown in Tables I
and II. With the help of these data, one can immediately evaluate poo/p, and
Ni.

The parameter relation and the total particle-flow rate thus evaluated are
shown in Figs. 2-5. To be more specific, in Figs. 24, p/pw of Eq. (126),
with the term of O(M,foo) being neglected, is shown as a function of M, for
various values of I' and for M., =0, 1, 2, and 3 in the case of m?/m* =2
and d8/d* = 1: Fig. 2 is for T,/ T, = 0.5, Fig. 3 for Ty,/T,, = 1, and Fig. 4
for 7o/ T,y = 2. In Fig. 5, ./\7} of Eq. (134), with the term of O(M,) being
neglected, is shown for 7o/ T, = 0.5, 1, 1.5, and 2 in the case of m?/m4 =2
and d8/d* = 1. Since N /T is 1ndependent of T, it is shown as a function of
Moo R

As for the macroscopic quantity, 7g), TH) UV2m) and Dipa) [=
—(Ty/ Too)T(0)] are independent of T', m®/mA, and d®/d*, while At/ T
is independent of I'. In Fig. 6, 7g ), fH(O), U210y, and Dig1y, as well as
At/ T in the case of m?/m* =2 and d®/d* =1, are shown for Mo =
0, 1, 2, and 3: Fig. 6(a) is for Tw/T, = 0.5, and Fig. 6(b) for T/ T, =
2.

So far, we have considered the case where the molecules of both components
are hard spheres. However, the previous numerical data®~% for the function F in
Eq. (20a) and the function Gy in Eq. (129a) have been obtained on the basis of the
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Fig. 2. poo/Pw VS Myeo for Too/ Ty = 0.5 in the case of mZ /m? = 2 and d8 /d4 = 1. (a) Myx = 0,
(b) Moo = 1, (¢) Moo =2, (d) Myoo = 3.

GSB model (under the restriction that the molecules of the vapor are mechanically
identical with those of the noncondensable gas). Therefore, we summarize the
corresponding results for the GSB model in Appendix E. In Fig. 7, we show
Poo/ Pw of Eq. (E13), with the term of O(M?2_)) being neglected, as a function
of M, for various I' and for Mo, =0, 1, 2, and 3 in the case of T,/ T, = 1,
mB/m4 =2, and C48/C44 = CB8/C44 = 1. In the figure, the result obtained
by the direct numerical solution of the original boundary-value problem, Egs. (E1),
(10a), (10b), (12a), and (12b), is also shown. On the other hand, in Fig. 8§, j\”@ of
Eq. (E14), with the term of O(M, ) being neglected, is compared with the result
of the direct numerical solution in the same case as in Fig. 7 (except the trivial
case of M, = 0).

10. CONCLUDING REMARKS

We have considered the half-space problem of condensing vapor flows in the
presence of a noncondensable gas. The problem itself is a fundamental problem
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Poo/Pu
Poo/Pu

A'[n o]

1.8

poc/pu:
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Mo - Moo
(¢) Moo =2 (d) Mo =3

Fig. 3. poo/pw V8 My for Ty /T, = 1 in the case ome/mA =2 and dB/dA =1.(a) Mioc =0,
(b) Miso = 1, (¢) Moo = 2, (d) Moo = 3.

for the Boltzmann equation that deserves rigorous mathematical study. Another
important aspect of the problem is a generator for the boundary condition for the
compressible Euler equation for the vapor flows in the continuum limit in the pres-
ence of a trace of a noncondensable gas, as described in Sec. 1. More specifically,
the boundary condition on the condensing surface is essentially given by Egs. (20)
and (129) with an auxiliary condition.®3”) In refs. 6 and 7, the functions F, and
Fpin Eq. (20) and G and G, in Eq. (129) were constructed numerically. However,
the construction of functions of three or four independent variables by solving the
Boltzmann equation each time is a formidable task, so that the following two sim-
plifications were introduced: (i) Only the case where the mechanical property of
the vapor molecules is the same as that of the noncondensable gas was considered;
(i1) in place of the Boltzmann equation, the GSB model was employed.

In the present study, restricting ourselves to the case of slow condensation
(Moo < 1), we tried to release the restrictions (i) and (ii). That is, we have derived
analytical expressions of the functions F; and G for hard-sphere molecules on the
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Fig. 4. poo/Pw VS Myoo for Ty / T,y = 2 in the case of m® /m? =2 and d® /d* = 1. (a) My = 0,
(b) Moo = 1, (¢) Mioo =2, (d) Mioo = 3.
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Fig. 5. ,/\7}/ I" vs M, for various 7o,/ Ty, in the case ome/mA =2 and dB/dA =1.
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Fig. 6. Profiles of the macroscopic quantities for various M;oo. (2) Too/ Ty = 0.5, (b) Too/Tw = 2.
The fl[-[(o), TH(O), ﬁz[-{(o), and 131[-[(1) [= _(Tw/Too)TH(O)] are independent of F, mB/mA, and dB/dA,
while fzg(l)/ I" is independent of T'; ﬁg(l)/ T for m? /m“ = 2 and d® /d* = 1 is shown in the figure.

basis of the Boltzmann equation. The result is given by Egs. (126) and (134). These
expressions can be used conveniently in the boundary conditions for the Euler
equations on the condensing surface. In addition, we have clarified the behavior of
the vapor flows passing through the noncondensable gas and condensing onto the
plane condensed phase by obtaining the analytical expressions of the macroscopic
quantities.

APPENDIX A: SOME PROPERTIES OF COLLISION INTEGRAL

The collision integral jﬂ“(f, g) defined in Eq. (9a) has the following
properties?>24):
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Fig. 7. poo/Pw VS My for the GSB model (Tno/Ty =1, m®/m? =2, and C48/C44 =
CBEB/CA4 = 1). (a) Myso = 0, (b) Myoo = 1, (¢) Myoo = 2, (d) My = 3. The symbols o (I' = 0), a
(' =0.2),0(' =0.5), 0 (' =1), and <(I" = 2) indicate the results of direct numerical analysis of
the GSB model.

[ #rgac =0 an
f (sz) [J*“(f. ) + J*(g. Nd’¢ =0, (A2)
/ <22> RARBA B £ )

+ P RAPJ4P (g, Pld’t =0, (A3)

where d*¢ = dt,d¢,dts, and the domain of integration is the whole space of ¢;
(m4 =1).
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Fig. 8. N/ vs Myoo for the GSB model (Too/Tyy =1, m®/m# =2, and C48/C44 = CBE/
CA1 = 1). () Moo = 1, (b) Myoo = 2, (¢) Myoo = 3. See the caption of Fig. 7.

APPENDIX B: EXPLICIT FORM OF 7 ()

N0y = /FIO—;(O)d3§’ Py = M N0y (Bla)
) 1 A
Um0y = ﬁa—/fz‘Fg(O)d3§’ (B1b)
H(0)
~ ~ S 2 N A 2 A 3
P = T Tho) = 31" / (& = Wuo) Flod’s (Blc)
Aoy = Y %oy Puo = Y Aoy (Bld)
a=A,B a=A4,B
PH©O)ViH©) = Z P10y Vs H(0)» (Ble)
a=A,B

. R - . 2, . . 2
PH©) = nHO) THO) = Z [P?{(O) + 5:0%(0)(”?11(0) — i H(©) j| ,
a=A4,B

(BIf)
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2 3 H(1)
1y = /(Cj ]H(O)) FH(])d ¢ = <—> H(0)>
) n

H(0)

Phay = ﬁc;[(O)TI(-)t[(l) + %) Th)»

Ay = Z Ay Prq) = Z Prqys

a=A4,B a=A,B

PH()
Z (Pr10) Vi) + Py Vime) — = ViH()
a=A,B PH(O)

Vi) = .

. . 2 .4 . . )
PHO1) = Z |:P?1(1) + 3:071(1)(1’;[11(0) — VjH(©)
a=A4,B

4 ~or Ao ~ ot ~
+§IOH(O)(U]'H(O) = 000 gy — Vi) | 5

prqy = Ay Tao) + Ao Taa).

A A 3 ~ ~a A
M) = / Frayd§ Puey = m i),

n
b 3 H(1)
0y = /(fz zH(O))FH(Z)d ¢ = <—> 07 mqy»

0]

f—va _ 2m* (é- — Y )2}'}0( d3
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ViHQ) = 7 Z (OF0) ) T PrmyVinay + Pre)Vino)
PHO) '8
PH() PHQ) A
- ()v- D~ % ()viH(O)’

~ iH(
PH(0) PH(0)
. » 2 o
PHO) = Z Puoy + ng(O)[(UjH(l) = VjH(1))
a=A,B
+2(0F 50y — 00O ) — VjHE)]
+3 850010y — 0701y = Oj)
20 s . 2
+3 P ino) — Vjm0) } :

PHE) = 1H©0)THE) + AH0) THO) + A HE) THO).-
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(B3d)

(B3e)

(B3f)

(B3g)

(B3h)

The functions 4(¢) and B(¢) in Eq. (49) are the solution of the following

integral equations:
LG A, G AQ) = —5i(¢* = 5/2),

subsidiary condition: f A EAdE =0,

= —2(§i§j - %CZ(SU),
where

oo

e\ 372
¢ =@H" E“(t)z(;) exp(—m®¢?),

(Cla)

(C1b)

(€2)

(©3)
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d;; is the Kronecker delta, and LPe (f, g)isthelinearized collision operator defined
by

LP(f, ) = [JP*(fEP, E*)+ JP*(EP, gE*)]/E*(¢)

— 1 B Ba Pa
N / EF@LSE) + 2

— f(&) — g@)le; V1dQueNd®t,,  (C4)

with £, = (¢7;)!/?. The LA4(f, f)is identical to the linearized collision operator
for a single-component gas. The functions A4(¢) and B(¢), which were obtained
numerically in refs. 38 and 39, are given in Table 3.1 in ref. 2.

The y; and y, appearing in Egs. (52c) and (52d) [or Egs. (81c) and (81d)] are

defined by
ni|_87 [F[ B©)],6p4
=T [0 | (©3)
in terms of B(¢) and A(¢) and have numerical values®3%)

y1 = 1.270042427, y2 = 1.922284066. (C6)

The y, and y; are related to the viscosity u and the thermal conductivity A of the
vapor at temperature 7' as

_ nm QKT /) _ SpkQKT/m)' e
C 42m@Aye 82w (dA)

Table lll. Numerical values of A}A = Apy(X* =1)and [)’}B = Drp(X4 = 1) for various
d®/d* and m?® /m

d¥/dT=0.5 dPldt =1 dBjd* =2

m® /m4 A%y Dig Ny Dig Ny Dig
0.1 —0.34449 —1.5877  —0.19377 —0.90478  —0.086121 —0.41699
0.2 —0.49896  —1.0531 —0.28066 —0.60782  —0.12474  —0.28974
0.5 —0.85156  —0.48449  —0.47900 —0.26582 —0.21289  —0.10963
1 —13586  —0.10757 —0.764215339 0 —0.33965 0.076834
2 —2.3241 0.16818 —1.3073 0.21582  —0.58102 0.24985
3 —3.2761 0.27340  —1.8428 030276 —0.81903 0.32374
4 —4.2241 032771  —2.3760 0.34866  —1.0560 0.36363
5 —5.1702 036065  —2.9082 037687 —1.2925 0.38845
8 —8.0039 0.41042  —4.5022 0.42000 —2.0010 0.42685
10 —9.8914 0.42706  —5.5639 0.43457  —2.4728 0.43994
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APPENDIX D: FUNCTIONS A2(¢; X4), BE(¢; X4), AND DWB(¢; X4

The functions A4%(¢; X*), B(¢; X*), and DYV*(¢; X)) (@ =4, B, y =
A, B) are, respectively, the solutions of the following integral equations®”):

> KPXPLP (4°(0), 6 A%(0) = —&; (n%“cz - %) : (Dla)
B=A,B
subsidiary condition: Z mP XxP f P AP(OEP(o)de = 0, (D1b)
B=A.B

Z K P xPT P ((;“i;j — %;“28,7)3'3(5)’ (é“ié'j — %4251‘j>3a(§)>

p=A.B
~a 1 2
= =2m" ( &gy — gf 3ij |, (D2)
Y RIXXPT (6 DY), 6 D)) =~ (&W - ’"—fﬂ) ,
Pt > mbX
(D3a)
subsidiary condition: Z mP xP / ADYB(OEP(0)de = 0. (D3b)

B=A.B

Here, X* is a parameter (0 < X4 < 1) and X® = 1 — X, Physically, X* indi-
cates the concentration of the A-component, and thus X? that of the B-component.
In Egs. (D1a)~(D3b), the dependence of X4 in 4%, B¥, and D" is omitted for
simplicity. In Eq. (54), only 42, B2, and D8 at X4 = 1 appear.

Let us introduce the following A,p and D7, ?7:

Aaﬂ(XA)] _ 4_7T R 4 [D(ﬂ)a(C;XA)] Y
[ﬁfa(XA) - 3/0 A%(2; X4 E®(£)dg. (D4)

Then, A’g 4 and b’; 5 occurring in Eq. (56) are defined by
Ab =Aps(X*=1),  Dig=Drp(X*=1). (D5)

In ref. 28, the database for the various transport coefficients for a binary
mixture of hard-sphere gases has been constructed. In this process, the functions
A%(¢; Xy and DY (¢; X*) have been obtained though their data are not shown
in the paper. If the data are exploited, the integration in Eq. (D4) is immediate.
Some of the numerical results are shown in Table III.
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APPENDIX E: RESULTS FOR THE GSB MODEL

To start with, we show the GSB model in the dimensionless form. The
dimensionless variables are the same as those used for the hard-sphere molecules
[cf. Egs. (6) and (7)]. The GSB model in the present steady and spatially one
dimensional case is written as follows:

By s R
fy— = Z CPepb(FPe — Fe), (E1)
Yo 5T
where
AN 3/2 2
ﬁvﬂa_ﬁa (m_i) CXp( ma(é‘j’\_ Uj) )
nT T
me gy . .
X {1 +27(v7 —0;)(¢ —0))
N Aﬁ"‘—T_i_Zrh"‘(Aﬂa 5| [ & -9 3 (E29)
7 A 7 2 [
sana "ﬁ"ﬁ
Ao MUV +mPu;
pe — 1 1 E2b
! me + mb (E2b)
Ly LA Y Y VBN Y B
—m W‘F% + +§m (vj_vj) s (E2¢)
CPe = cPeyci4, (E2d)

and CP* is a constant (C4? = C84). The 7*, [ 7%, ¢;,and T in Egs. (E1)—(E2c)
are given by Egs. (13a)—(13f). The collision frequency v#* of the a-molecules
for their collisions with the 8-molecules is given by v#* = CPn# . Therefore, the
mean free paths /,, and /, of the vapor molecules [cf. Egs. (5) and (16)] are given
respectively by

L 2 (2kT,\"* 1 L 2 [(2kT\'* 1 E3)
N AN CA4p,,’ Ty \ mA CAdp g,

In this Appendix, the Boltzmann equation (8) is replaced by Eq. (E1). Since
Hwlw = (Tso/ Tw) ™ *noolso holds for this model, I’ of Eq. (15) reduces to

oo
r— o1 f ABdx,, (E4)
0
which is different from Eq. (17) for hard-sphere molecules by the factor F!/?

in the right-hand side. The dimensionless parameters contained in the boundary-
value problem, Egs. (E1), (10a), (10b), (12a), and (12b), are Tx, Poo (OF 7o),
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Dioo, Droe, B, CAB CBB and T'. That is, d? for hard-sphere molecules has been
replaced by C48 and C55.
We have carried out the same asymptotic analysis as in the case of hard-sphere
molecules. We give the results listing the difference from the hard-sphere case.
The fluid-dynamic equations and the boundary conditions are the same as
Egs. (81a)—(83), except that

v ="Tyor  v="Tye (ESa)
Ay =—(1+m®)Ty5 218, Dy =0, (ESb)
Ci=—2.13204, C, =0.55844. (E5c)

As for the solution of the fluid-dynamic system, Egs. (87), (89), and (92)
hold, first of all.

e Case I ({20 = 0and T, = 1)
In this case, Egs. (94)—(98) hold.
e Case II (D500 = 0 and Ty # 1)

Equation (99) holds. Equations (102), (107), and (109) are replaced
respectively by
), (E6)

¢AB B

A

T [ 4 . Tro) — T
y:—?.O (TH(O)—1+TOOID ZHO T e

1— Ty

a8 20488 T 1 Ty — Tool | (E7)
H() = ST = ;
O 14mb ol T [l — Tl
1| 2C48m® | A
~ _ = " /2 _ _*
DPoo(l) = 7 |: Y T.)°T+2C (T — 1) = C |. (E8)

e Case III (0, # 0)
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Equations (116), (117), (122), and (124) are, respectively, replaced by

~ . 2 Dm0\ 2 V210
Tho) = Too — 5v§oo<1— ﬁz()> +(1-Tx +5v200 1—?() ;
o0 o0

(E9)
T ) 92 ) 2
y=—10em (1= 22 ) 4 22— (1 220
2 V200 5 V2co

~ 2 3
- (1 T+ -agw) D2HO) } . (E10)
5 1%

o0
AAB 2 CAB,;]B
2C4%m”® T 1 Voo — D B
e A O (E11)
1+m? Tol.fz TH(O) V200
1 205mE L 2 i
Pos(l) = l—i——ABT 42 -1+ 5v2C>o -Cy . (E12)

 The parameter relation (126) and the dimensionless total particle-flow rate
N (134) are replaced respectively by

P _ (3 VT amBymt AP TG\
Pw 6 T, 1 +mB/m4 C44 \ T,

T Mtzoo * 2
+2C | = +1 —Cyt My + O(M,,),

Ty 3
(E13)
o (5\" L+ m?/m
6 T Miso + O(Myoo). El4
Ny (6) 1 4+ (mB/m4)(1 4 C4B/C44) t0e + O(Myco) (E14)
It should be noted here that A/ , which is defined by Eq. (128), becomes
~ A~ oo
Ny = ToSl/ A%07 dx, (E15)
0

in place of Eq. (130) for the same reason as the difference between Egs. (17) and
(E4).
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